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∆T (x)
T

∼ Φ(x)

Φ(x) = ΦL(x) + fNL

[
Φ2

L(x) − 〈Φ2
L(x)〉

]

Non-Linear Coupling Parameter

Measurement of non-Gaussian CMB anisotropies can potentially 
constrain non-linearity, “slow-rollness”, and “adiabaticity” in inflation.
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Non-Gaussianity from the simplest inflation model is very small:

Much higher level of primordial non-Gaussianity is predicted by:

 Models with Multiple Scalar Fields
 Non-Adiabatic Fluctuations
 Features in the Inflation Potential
 Non-Canonical Kinetic Terms
 ...

Review: N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto, Phys. Rep. 402, 103 (2004)

fNL ∼ 0.01− 1



Evidence of Primordial Non-Gaussianity (fNL) in the Wilkinson Microwave Anisotropy Probe
3-Year Data at 2:8!
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We present evidence for primordial non-Gaussianity of the local type (fNL) in the temperature
anisotropy of the cosmic microwave background. Analyzing the bispectrum of the Wilkinson
Microwave Anisotropy Probe 3-year data up to ‘max ! 750 we find 27< fNL < 147 (95% C.L.). This
amounts to a rejection of fNL ! 0 at 2:8!, disfavoring canonical single-field slow-roll inflation. The
signal is robust to variations in lmax, frequency and masks. No known foreground, instrument systematic,
or secondary anisotropy explains it. We explore the impact of several analysis choices on the quoted
significance and find 2:5! to be conservative.

DOI: 10.1103/PhysRevLett.100.181301 PACS numbers: 98.70.Vc, 98.80.Es

It is now widely accepted that tests of primordial non-
Gaussianity, parameterized by the nonlinearity parameter
fNL, promise to be a unique probe of the early Universe [1].
Although the non-Gaussianity from the simplest inflation
models is very small, fNL " 0:01# 1 [2–4], there is a very
large class of more general models, e.g., models with
multiple scalar fields, features in inflation potential, non-
adiabatic fluctuations, noncanonical kinetic terms, devia-
tions from the Bunch-Davies vacuum, among others, that
predict substantially higher level of primordial non-
Gaussianity (see [5] for a review).

Recent calculations of the perturbations arising in the
ekpyrotic or cyclic cosmological scenarios [6] have con-
cluded that these scenarios can predict fNL much larger
than single-field slow-roll inflation [7]. Detailed calcula-
tions in these models are fraught with difficulties con-
nected to matching the perturbations through the
cosmological singularity at the bounce. However, current
calculations suggest that primordial non-Gaussianity of the
fNL type could be a powerful discriminant between ekpyr-
otic models and standard slow-roll inflation. As such, the
search for primordial non-Gaussianity is complementary to
the search for the inflationary gravitational wave back-
ground. We will argue in this letter that the WMAP 3-
year data already distinguishes fNL ! 100 from fNL " 0 at
a statistically significant level.

Primordial non-Gaussianity can be described in terms of
the 3-point correlation function of Bardeen’s curvature
perturbations, !$k%, in Fourier space:

 h!$k1%$k2%$k3%i ! $2"%3#3$k1 & k2 & k3%F$k1; k2; k3%:
(1)

Depending on the shape of the 3-point function, non-
Gaussianity can be broadly classified into two classes [8].
First, the local, ‘‘squeezed’’, non-Gaussianity where
F$k1; k2; k3% is large for the configurations in which k1 '
k2, k3. Second, the nonlocal, ‘‘equilateral’’, non-

Gaussianity where F$k1; k2; k3% is large for the configura-
tion when k1 " k2 " k3.

The local form arises from a nonlinear relation between
inflaton and curvature perturbations [2,3], curvaton models
[9], or the ekpyrotic models [7]. The equilateral form arises
from noncanonical kinetic terms such as the Dirac-Born-
Infeld action [10], the ghost condensation [11], or any
other single-field models in which the scalar field acquires
a low speed of sound [12]. While we focus on the local
form in this letter, it is straightforward to repeat our analy-
sis for the equilateral form.

The local form of non-Gaussianity may be parametrized
in real space as [1,3,13]

 !$r% ! !L$r% & fNL$!2
L$r% # h!2

L$r%i%; (2)

where fNL characterizes the amplitude of primordial non-
Gaussianity. Note that the Newtonian potential has the
opposite sign of Bardeen’s curvature perturbation, !.

The first fast bispectrum based fNL estimator using
temperature anisotropies alone was introduced in [14].
The idea of adding a linear term to reduce excess variance
due to noise inhomogeneity followed in [15]. Applied to
the WMAP 3-year data up to ‘max " 400 this estimator has
yielded the tightest constraint on fNL so far: #36< fNL <
100 (2!) [16]. This estimator was generalized to utilize
both the temperature and E-polarization information in
[17], where we pointed out that the linear term had been
incorrectly implemented in Eq. (30) of [15]. The corrected
estimator enables us to analyze the entire WMAP data
without suffering from a blowup in the variance at high ‘.

Our analysis.—We assume a standard Lambda cold dark
matter (CDM) cosmology with following cosmological
parameters: "b ! 0:042, "cdm ! 0:239, "# ! 0:719,
h ! 0:73, $ ! 0:09, and ns ! 1. We will discuss the effect
of varying these fiducial parameters below.

We used the generalized bispectrum estimator of pri-
mordial non-Gaussianity of local type described in [17].
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FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP1) OBSERVATIONS:
COSMOLOGICAL INTERPRETATION
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ABSTRACT

The WMAP 5-year data provide stringent limits on deviations from the minimal, 6-parameter
ΛCDM model. We report these limits and use them to constrain the physics of cosmic inflation
via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves,
and spatial curvature. We also constrain models of dark energy via its equation of state, parity-
violating interaction, and neutrino properties such as mass and the number of species. We detect
no convincing deviations from the minimal model. The 6 parameters and the corresponding 68%
uncertainties, derived from the WMAP data combined with the distance measurements from the
Type Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies,
are: Ωbh2 = 0.02265 ± 0.00059, Ωch2 = 0.1143 ± 0.0034, ΩΛ = 0.721 ± 0.015, ns = 0.960+0.014

−0.013,

τ = 0.084 ± 0.016, and ∆2
R = (2.457+0.092

−0.093) × 10−9 at k = 0.002 Mpc−1. From these we derive
σ8 = 0.817 ± 0.026, H0 = 70.1 ± 1.3 km s−1 Mpc−1, Ωb = 0.0462 ± 0.0015, Ωc = 0.233 ± 0.013,
Ωmh2 = 0.1369 ± 0.0037, zreion = 10.8 ± 1.4, and t0 = 13.73 ± 0.12 Gyr. With the WMAP data
combined with BAO and SN, we find the limit on the tensor-to-scalar ratio of r < 0.20 (95% CL),
and that ns > 1 is disfavored even when gravitational waves are included, which constrains the
models of inflation that can produce significant gravitational waves, such as chaotic or power-law
inflation models, or a blue spectrum, such as hybrid inflation models. We obtain tight, simultaneous
limits on the (constant) equation of state of dark energy and the spatial curvature of the universe:
−0.11 < 1+w < 0.14 (95% CL) and −0.0175 < Ωk < 0.0085 (95% CL). We provide a set of “WMAP

distance priors,” to test a variety of dark energy models with spatial curvature. We test a time-
dependent w with a present value constrained as −0.38 < 1 + w0 < 0.14 (95% CL). Temperature
and dark matter fluctuations are found to obey the adiabatic relation to within 8.6% and 2.0%
for the axion-type and curvaton-type dark matter, respectively. The power spectra of TB and EB
correlations constrain a parity-violating interaction, which rotates the polarization angle and converts
E to B. The polarization angle could not be rotated more than −5.9◦ < ∆α < 2.4◦ (95% CL) between
the decoupling and the present epoch. We find the limit on the total mass of massive neutrinos of
∑

mν < 0.61 eV (95% CL), which is free from the uncertainty in the normalization of the large-
scale structure data. The number of relativistic degrees of freedom, expressed in units of the effective
number of neutrino species, is constrained as Neff = 4.4±1.5 (68%), consistent with the standard value
of 3.04. Finally, quantitative limits on physically motivated primordial non-Gaussianity parameters
are −9 < f local

NL < 111 (95% CL) and −151 < f equil
NL < 253 (95% CL) for the local and equilateral

models, respectively.
Subject headings: cosmic microwave background, cosmology: observations, early universe, dark matter,

space vehicles, space vehicles: instruments, instrumentation: detectors, telescopes
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1. INTRODUCTION
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Θ̃(n̂) = Θ [n̂ + α̂]



Weak Lensing of the Primary Bispectrum

Credit: Vale, Amblard, White (2004) NASA, ESA, and R. Massey (CalTech) Credit: Vale, Amblard, White (2004)

Θ̃(n̂) = Θ [n̂ + α̂]
= Θ [n̂ +∇φ(n̂)]
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Θ̃(n̂) = Θ [n̂ + α̂]
= Θ [n̂ +∇φ(n̂)]

+
1
2
∇iφ(n̂)∇jφ(n̂)∇i∇jΘ(n̂)

≈ Θ(n̂) +∇iφ(n̂)∇iΘ(n̂)



Weak Lensing of the Primary Bispectrum

Credit: Vale, Amblard, White (2004) NASA, ESA, and R. Massey (CalTech) Credit: Vale, Amblard, White (2004)
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The Effect of Lensing on the Bispectrum

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77,  123006 (2008)
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A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77,  123006 (2008)

Reduction in the S/N due to Lensing
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Reduction in the S/N due to Lensing
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Bias in the non-Gaussian Parameter

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77,  123006 (2008)
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CMB Bispectrum of the squeezed case(s)

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77,  123006 (2008)
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CMB Bispectrum of the squeezed case(s)

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77,  123006 (2008)
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Reduction in the S/N due to Lensing
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Reduction in the S/N due to Lensing
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