Measuring Primary CMB Bispectrum: The Role of the Clumpy Universe

Devdeep Sarkar Center for Cosmology, UC Irvine

In collaboration with: Paolo Serra (UCI), and Asantha Cooray (UCI).

IoA, Cambridge

Wednesday Astrophysics Talk

Jan 28, 2009

 $\Delta T(\hat{\mathbf{n}})$ $\Theta(\hat{\mathbf{n}}) \equiv$ $\sum \Theta_{lm} Y_l^m(\hat{\mathbf{n}})$ lm

$$\Theta(\hat{\mathbf{n}}) \equiv \frac{\Delta T(\hat{\mathbf{n}})}{T} = \sum_{lm} \Theta_{lm} Y_l^m(\hat{\mathbf{n}})$$
$$\left\langle \Theta_{lm} \Theta_{l'm'} \right\rangle = \delta_{l,l'} \delta_{m,m'} C_l^{\Theta\Theta}$$

$$\begin{split} \Theta(\hat{\mathbf{n}}) &\equiv \frac{\Delta T(\hat{\mathbf{n}})}{T} = \sum_{lm} \Theta_{lm} Y_l^m(\hat{\mathbf{n}}) \\ \langle \Theta_{l_1m_1} \Theta_{l_2m_2} \Theta_{l_3m_3} \rangle &= \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} B_{l_1l_2l_3}^\Theta \\ \langle \Theta_{lm} \Theta_{l'm'} \rangle &= \delta_{l,l'} \delta_{m,m'} C_l^\Theta \Theta \end{split}$$

Primordial non-Gaussianity

Primary CMB Bispectrum

Primordial non-Gaussianity Primary CMB Bispectrum

Primordial non-Gaussianity

Primary CMB Bispectrum

Measurement of non-Gaussian CMB anisotropies can potentially constrain non-linearity, "slow-rollness", and "adiabaticity" in inflation.

Primordial non-Gaussianity

Primary CMB Bispectrum

Non-Gaussianity from the simplest inflation model is very small: $f_{NL} \sim 0.01 - 1$

Much higher level of primordial non-Gaussianity is predicted by:

- . Models with Multiple Scalar Fields
- · Non-Adiabatic Fluctuations
- Features in the Inflation Potential
- Non-Canonical Kinetic Terms

• ...

PRL 100, 181301 (2008)

week ending 9 MAY 2008

Evidence of Primordial Non-Gaussianity $(f_{\rm NL})$ in the Wilkinson Microwave Anisotropy Probe 3-Year Data at 2.8 σ

Amit P. S. Yadav¹ and Benjamin D. Wandelt^{1,2}

¹Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, Illinois 61801, USA ²Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801, USA (Received 7 December 2007; revised manuscript received 6 March 2008; published 7 May 2008)

We present evidence for primordial non-Gaussianity of the local type $(f_{\rm NL})$ in the temperature anisotropy of the cosmic microwave background. Analyzing the bispectrum of the Wilkinson Microwave Anisotropy Probe 3-year data up to $\ell_{\rm max} = 750$ we find $27 < f_{\rm NL} < 147$ (95% C.L.). This amounts to a rejection of $f_{\rm NL} = 0$ at 2.8 σ , disfavoring canonical single-field slow-roll inflation. The signal is robust to variations in $l_{\rm max}$, frequency and masks. No known foreground, instrument systematic, or secondary anisotropy explains it. We explore the impact of several analysis choices on the quoted significance and find 2.5 σ to be conservative.

FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP¹) OBSERVATIONS: COSMOLOGICAL INTERPRETATION

E. KOMATSU¹, J. DUNKLEY^{2,3,4}, M. R. NOLTA⁵, C. L. BENNETT⁶, B. GOLD⁶, G. HINSHAW⁷, N. JAROSIK², D. LARSON⁶, M. LIMON⁸ L. PAGE², D. N. SPERGEL^{3,9}, M. HALPERN¹⁰, R. S. HILL¹¹, A. KOGUT⁷, S. S. MEYER¹², G. S. TUCKER¹³, J. L. WEILAND¹⁰, E. WOLLACK⁷, AND E. L. WRIGHT¹⁴

Submitted to the Astrophysical Journal Supplement Series

ABSTRACT

 $-9 < f_{NL}^{local} < 111 \text{ and } -151 < f_{NL}^{equil} < 253(95\% CL)$

Journey Through the "Clumpy" Universe

Journey Through the "Clumpy" Universe

Antony Lewis and Anthony Challinor, Phys.Rept. 429, 1 (2006)

Credit: Vale, Amblard, White (2004)

NASA, ESA, and R. Massey (CalTech)

Credit: Vale, Amblard, White (2004)

Credit: Vale, Amblard, White (2004)

NASA, ESA, and R. Massey (CalTech)

3.5 billion years ago 5 billion years ago 6.5 billion years ago

Credit: Vale, Amblard, White (2004)

Credit: Vale, Amblard, White (2004)

 $|\tilde{\Theta}(\hat{\mathbf{n}}) = \Theta \left[\hat{\mathbf{n}} + \hat{\alpha}\right]$

NASA, ESA, and R. Massey (CalTech)

Credit: Vale, Amblard, White (2004)

Credit: Vale, Amblard, White (2004)

 $\Theta(\hat{\mathbf{n}}) = \Theta\left[\hat{\mathbf{n}} + \hat{\alpha}\right]$

 $=\Theta\left[\hat{\mathbf{n}}+\nabla\phi(\hat{\mathbf{n}})\right]$

NASA, ESA, and R. Massey (CalTech)

3.5 billion years ago 5 billion years ago 6.5 billion years ago

Credit: Vale, Amblard, White (2004)

Credit: Vale, Amblard, White (2004)

 $\Theta(\hat{\mathbf{n}}) = \Theta\left[\hat{\mathbf{n}} + \hat{\alpha}\right]$

 $=\Theta[\hat{\mathbf{n}}+\nabla\phi(\hat{\mathbf{n}})]$

 $\approx \Theta(\hat{\mathbf{n}}) + \nabla_i \phi(\hat{\mathbf{n}}) \nabla^i \Theta(\hat{\mathbf{n}})$

NASA, ESA, and R. Massey (CalTech)

 $+\frac{1}{2}\nabla_i\phi(\hat{\mathbf{n}})\nabla_j\phi(\hat{\mathbf{n}})\nabla^i\nabla^j\Theta(\hat{\mathbf{n}})$

3.5 billion years ago 5 billion years ago 6.5 billion years ago

Credit: Vale, Amblard, White (2004)

NASA, ESA, and R. Massey (CalTech)

Credit: Vale, Amblard, White (2004)

$$\begin{split} \tilde{\Theta}(\hat{\mathbf{n}}) &= \Theta \left[\hat{\mathbf{n}} + \hat{\alpha} \right] \\ &= \Theta \left[\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}}) \right] \\ &\approx \Theta(\hat{\mathbf{n}}) + \nabla_i \phi(\hat{\mathbf{n}}) \nabla^i \Theta(\hat{\mathbf{n}}) \\ &\quad + \frac{1}{2} \nabla_i \phi(\hat{\mathbf{n}}) \nabla_j \phi(\hat{\mathbf{n}}) \nabla^i \nabla^j \Theta(\hat{\mathbf{n}}) \end{split}$$

$$\tilde{B}_{l_1 l_2 l_3}^{\Theta} &= \sum_{m_1 m_2 m_3} \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \langle \tilde{\Theta}_{l_1 m_1} \tilde{\Theta}_{l_2 m_2} \tilde{\Theta}_{l_3 m_3} \end{split}$$

The Effect of Lensing on the Bispectrum

Reduction in the S/N due to Lensing

Reduction in the S/N due to Lensing

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77, 123006 (2008)

Bías in the non-Gaussian Parameter

Measuring Primary CMB Bispectrum: The Role of the Clumpy Universe

Devdeep Sarkar Center for Cosmology, UC Irvíne

In collaboration with: Paolo Serra (UCI), and Asantha Cooray (UCI).

IoA, Cambridge

Astrophysics Talk

Jan 28, 2009

DSARKAR.ORG

dulissa.wordpress.com

XTRASLIDES

CMB Bispectrum of the equilateral case

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77, 123006 (2008)

CMB Bispectrum of the equilateral case

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77, 123006 (2008)

CMB Bispectrum of the equilateral case

CMB Bispectrum of the squeezed case(s)

10

62

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77, 123006 (2008)

Reduction in the S/N due to Lensing

$$\left(\frac{S}{N}\right)^2 = \sum_{l_1 l_2 l_3} \frac{\left(B_{l_1 l_2 l_3}^{\Theta}\right)^2}{6C_{l_1}^{tot}C_{l_2}^{tot}C_{l_3}^{tot}}$$

A. Cooray, D. Sarkar, and P. Serra; Phys. Rev. D, 77, 123006 (2008)