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ABSTRACT
We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift

range 0.16 ¹ z ¹ 0.62. The luminosity distances of these objects are determined by methods that employ
relations between SN Ia luminosity and light curve shape. Combined with previous data from our
High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift
supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmo-
logical parameters : the Hubble constant the mass density the cosmological constant (i.e., the(H0), ()

M
),

vacuum energy density, the deceleration parameter and the dynamical age of the universe)"), (q0), (t0).
The distances of the high-redshift SNe Ia are, on average, 10%È15% farther than expected in a low mass
density universe without a cosmological constant. Di†erent light curve Ðtting methods, SN Ia()

M
\ 0.2)

subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmo-
logical constant (i.e., and a current acceleration of the expansion (i.e., With no prior)" [ 0) q0 \ 0).
constraint on mass density other than the spectroscopically conÐrmed SNe Ia are statistically)

M
º 0,

consistent with at the 2.8 p and 3.9 p conÐdence levels, and with at the 3.0 p and 4.0 pq0 \ 0 )" [ 0
conÐdence levels, for two di†erent Ðtting methods, respectively. Fixing a ““ minimal ÏÏ mass density, )

M
\

results in the weakest detection, at the 3.0 p conÐdence level from one of the two methods.0.2, )" [ 0
For a Ñat universe prior the spectroscopically conÐrmed SNe Ia require at 7 p()

M
] )" \ 1), )" [ 0

and 9 p formal statistical signiÐcance for the two di†erent Ðtting methods. A universe closed by ordinary
matter (i.e., is formally ruled out at the 7 p to 8 p conÐdence level for the two di†erent Ðtting)

M
\ 1)

methods. We estimate the dynamical age of the universe to be 14.2 ^ 1.7 Gyr including systematic uncer-
tainties in the current Cepheid distance scale. We estimate the likely e†ect of several sources of system-
atic error, including progenitor and metallicity evolution, extinction, sample selection bias, local
perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of
these e†ects appear to reconcile the data with and)" \ 0 q0 º 0.
Key words : cosmology : observations È supernovae : general
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1. INTRODUCTION

This paper reports observations of 10 new high-redshift
Type Ia supernovae (SNe Ia) and the values of the cosmo-
logical parameters derived from them. Together with the
four high-redshift supernovae previously reported by our
High-z Supernova Search Team et al.(Schmidt 1998 ;

et al. and two others et al.Garnavich 1998a) (Riess 1998b),
the sample of 16 is now large enough to yield interesting
cosmological results of high statistical signiÐcance. Con-
Ðdence in these results depends not on increasing the
sample size but on improving our understanding of system-
atic uncertainties.

The time evolution of the cosmic scale factor depends on
the composition of mass-energy in the universe. While the
universe is known to contain a signiÐcant amount of ordi-
nary matter, which decelerates the expansion, its)

M
,

dynamics may also be signiÐcantly a†ected by more exotic
forms of energy. Preeminent among these is a possible
energy of the vacuum EinsteinÏs ““ cosmological con-()"),
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ABSTRACT
We report measurements of the mass density, and cosmological-constant energy density, of)

M
, )",

the universe based on the analysis of 42 type Ia supernovae discovered by the Supernova Cosmology
Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are Ðtted
jointly with a set of supernovae from the Supernova Survey, at redshifts below 0.1, to yieldCala" n/Tololo
values for the cosmological parameters. All supernova peak magnitudes are standardized using a SN Ia
light-curve width-luminosity relation. The measurement yields a joint probability distribution of the
cosmological parameters that is approximated by the relation in the region0.8)

M
[ 0.6)" B [0.2 ^ 0.1

of interest For a Ñat cosmology we Ðnd (1 p statistical)()
M

[ 1.5). ()
M

] )" \ 1) )
M
flat \ 0.28~0.08`0.09 ~0.04`0.05

(identiÐed systematics). The data are strongly inconsistent with a " \ 0 Ñat cosmology, the simplest
inÑationary universe model. An open, " \ 0 cosmology also does not Ðt the data well : the data indicate
that the cosmological constant is nonzero and positive, with a conÐdence of P(" [ 0) \ 99%, including
the identiÐed systematic uncertainties. The best-Ðt age of the universe relative to the Hubble time is

Gyr for a Ñat cosmology. The size of our sample allows us to perform a variety oft0flat \ 14.9~1.1`1.4(0.63/h)
statistical tests to check for possible systematic errors and biases. We Ðnd no signiÐcant di†erences in
either the host reddening distribution or Malmquist bias between the low-redshift sampleCala" n/Tololo
and our high-redshift sample. Excluding those few supernovae that are outliers in color excess or Ðt
residual does not signiÐcantly change the results. The conclusions are also robust whether or not a
width-luminosity relation is used to standardize the supernova peak magnitudes. We discuss and con-
strain, where possible, hypothetical alternatives to a cosmological constant.
Subject headings : cosmology : observations È distance scale È supernovae : general
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compilation

ΩΛ = 0.713+0.027
−0.029(stat)+0.036

−0.039(sys)

WMAP

w = 1/3 w = 0 w < −1/3

w = −0.969+0.059
−0.063(stat)+0.063

−0.066(sys) [Union]

w = −x.xxx+0.077
−0.077(stat)+0.071

−0.071(sys) [SNLS]
(Guy, Conley: Talk at TEXAS 2008 on Dec 09, 2008)
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Seeking Temporal Evolution of “w”

1. Parametrize w(z)           [Adopted by DETF]

 Chevallier and Polarski 2001, Linder 2003

2. Principal Component Analysis
 Huterer and  Starkman 2003 

3. Uncorrelated Estimates of w(z)
 Huterer and Cooray 2005

w(z) = w0 + waz/(1 + z)



D.S., S. Sullivan, S. Joudaki, A. Amblard, D. Holz, and A. Cooray, PRL 100, 241302 (2008)

Going Model-Independent: The Future! 

w zup
w1 0.07

w2 0.15

w3 0.3

w4 0.6

w5 1.2

w6 1.8

H(z) = H0

[
Ωm (1 + z)3 + Ωk (1 + z)2 + (1− Ωm − Ωk)F (z)

]1/2

F (zn > z > zn−1) = (1 + z)3(1+wn)
n−1∏

i=0

(1 + zi)3(wi−wi+1)



3 or More!

D.S., S. Sullivan, S. Joudaki, A. Amblard, D. Holz, and A. Cooray, PRL 100, 241302 (2008)
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Credit: 
S. Colombi (IAP), 

CFHT Team
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Influence of Gravitational Lensing?

Fobs,lensed(z, n̂) = µ(z, n̂)Fobs,true(z)

Weak lensing can modify the SNa flux & bias estimates of w

Credit: 
S. Colombi (IAP), 

CFHT Team
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Two Supernova Populations

Scannapieco and Bildsten
(2005)

Also:
Hamuy et al. (1995)

Livio (2000)

SNRIa(t)
(100yr)−1

= B

[
Ṁ∗(t)

1010M◦Gyr−1

]
+ A

[
M∗(t)

1010M◦

]



Howell et al. 2007
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µB = m∗
B −M + α(s− 1)− βc

Tripp (1998), Guy et al. (2005)
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Is There a Signature in the Hubble Diagram?

m−M = 5 log
(

dL

Mpc

)
+ 25 +M

Distance
Modulus



D.S., A. Amblard, A. Cooray, and D. Holz, ApJL 684, L13 (2008)

Is There a Signature in the Hubble Diagram?

m−M = 5 log
(

dL

Mpc

)
+ 25 +M+ δD ∗ fD(z)
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D.S., A. Amblard, A. Cooray, and D. Holz, ApJL 684, L13 (2008)

Is There a Signature in the Hubble Diagram?

m−M = 5 log
(

dL

Mpc

)
+ 25 +M+ δD ∗ fD(z)

Pr
op

os
e!

With current data (192 SNe from 
Davis et al. 2007), the residual is 

consistent with zero:            

δD ∼ (5± 9)%

With future data, one will be able to 
constrain the residual much better.



Effect on the EOS: Bias in “w”

D.S., A. Amblard, A. Cooray, and D. Holz, ApJL 684, L13 (2008)



Effect on the EOS: Bias in “w”

D.S., A. Amblard, A. Cooray, and D. Holz, ApJL 684, L13 (2008)
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THANK YOU!


