Outline

The ABC's of Tidal Streams Model Building Constraining Galactic Potential So What?

TIDAL STREAMS AS GALACTIC POTENTIOMETERS

Devdeep Sarkar Extragalactic Astrophysics

February 08, 2007

UNIVERSITY OF CALIFORNIA, IRVINE

4 3 5 4

Devdeep Sarkar Extragalactic Astrophysics Tidal Streams as Galactic Potentiometers

1 The ABC's of Tidal Streams

2 MODEL BUILDING

3 Constraining Galactic Potential

4 So What?

• • = • • = •

Outline

The ABC's of Tidal Streams Model Building Constraining Galactic Potential So What?

1 The ABC's of Tidal Streams

2 MODEL BUILDING

3 Constraining Galactic Potential

4 So What?

• • = • • = •

TIDAL STREAMS

The Origin and all that...

• Natural by-product of hierarchichal structure formation.

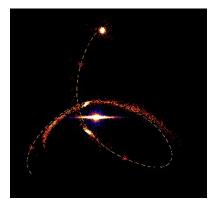
Devdeep Sarkar Extragalactic Astrophysics Tidal Streams as Galactic Potentiometers

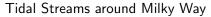
TIDAL STREAMS

The Origin and all that...

- Natural by-product of hierarchichal structure formation.
- Can be produced along the orbit of a satellite galaxy when stars and/or gas are torn from it by tidal forces from its host.

TIDAL STREAMS


The Origin and all that...


- Natural by-product of hierarchichal structure formation.
- Can be produced along the orbit of a satellite galaxy when stars and/or gas are torn from it by tidal forces from its host.
- The stripped material populates the leading and trailing tidal streams that are aligned with the orbit of the satellite.

THE ABC'S OF TIDAL STREAMS

TIDAL STREAMS

Kathryn V. Johnston

UNIVERSITY OF CALIFORNIA, IRVINE ▶ ∢ ≣

-

Devdeep Sarkar Extragalactic Astrophysics

TIDAL STREAMS AS GALACTIC POTENTIOMETERS

Outline THE ABC'S OF TIDAL STREAMS Model Building Constraining Galactic Potential So What?

POTENTIAL POTENTIOMETER?

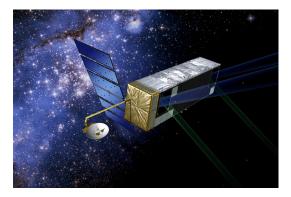
Motivation From Observations

 Several globular clusters known to possess excess unbound stars outside their tidal radii.

POTENTIAL POTENTIOMETER?

Motivation From Observations

- Several globular clusters known to possess excess unbound stars outside their tidal radii.
- Moving groups in the halo with no bound counterparts.


POTENTIAL POTENTIOMETER?

Motivation From Observations

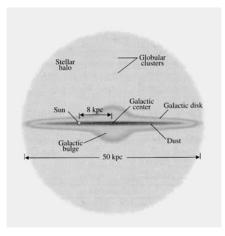
- Several globular clusters known to possess excess unbound stars outside their tidal radii.
- Moving groups in the halo with no bound counterparts.
- Discovery of a carbon star trail encircling the Galaxy (Irwin & Totten 1998) provides the first example of data sampling the entire length of a stellar tidal stream.

POTENTIAL POTENTIOMETER?

Future Observations

Upcoming satellite missions, e.g., SIM, will accurately measure five out of the six phase-space coordinates of a star.

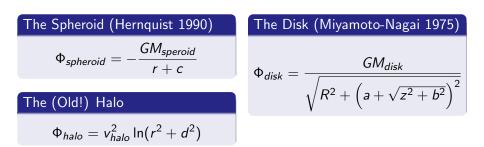
(http://planetquest.jpl.nasa.gov/SIM)


Why Johnston et al. 1999?

Exploring the possibilities...

This *letter* investigates, through numerical simulations, the extent to which the potential of the Milky Way can be recovered using a data set such as the carbon star stream (Irwin & Totten 1998) and assuming that phase-space positions can be inferred with accuracy of SIM satellite.

MODELING THE GALAXY

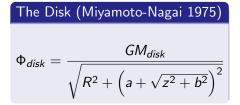

Three Component Model for MW

- The Disk
- The Spheroid
- The Halo

• • = • • = •

MODELING THE GALAXY

• The Three-Component Model as Presented in Spergel 1996 and Johnston et al. 1996.



・ 同 ト ・ ヨ ト ・ ヨ ト …

MODELING THE GALAXY

The (NEW!) Oblate and Triaxial Halo

$$\Phi_{halo}(x, y, z) = rac{v_{circ}^2}{2} \ln(x^2 + rac{y^2}{p^2} + rac{z^2}{q^2} + c^2)$$

• The Model as Presented in Johnston et al. 1999.

Devdeep Sarkar Extragalactic Astrophysics

TIDAL STREAMS AS GALACTIC POTENTIOMETERS

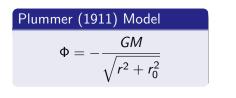
MODELING THE SATELLITES

Assumptions

 Since the satellite mass is much smaller than the MW, dynamical friction and energy exchange are assumed negligible.

Modeling The Satellites

Assumptions


- Since the satellite mass is much smaller than the MW, dynamical friction and energy exchange are assumed negligible.
- Interactions between the satellites will occur infrequently so that the evolution of each satellite can be considered independently.

MODELING THE SATELLITES

Evolution of 10⁴ Particles

- Each satellite is modeled with a collection of 10⁴ self-gravitationg particles whose mutual interactions are calculated using a self-consistent field code (Hernquist & Ostriker 1992).
- The particles are initially distributed as a Plummer model and let evolve in a MW-potential for 10 Gyr.

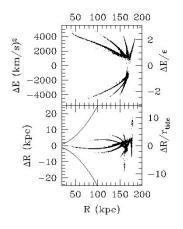
ENERGY DISTANCES

Tidal Radius

$$r_{tide} = R \left(rac{m_{sat}}{M_R}
ight)^{1/3}$$

Orbital Energies E of Material

$$\epsilon = r_{tide} \frac{d\Phi}{dR} = r_{tide} \frac{GM_R}{R^2}$$


of satellite's orbital energy E_{sat} .

Pericenter!

These equations should be evaluated at the pericenter of the satellite's orbit since most of the mass loss will occur where the tidal field of the Milky Way is strongest.

ENERGY DISTANCES

(Johnston et al. 1999)

Devdeep Sarkar Extragalactic Astrophysics

Distance Estimates

$$E = \frac{1}{2} \left[v_{los}^2 + d^2 \left(\mu_l^2 + \mu_b^2 \right) \right] + \Phi_{MW}$$

Result from Simulation 11

Energy offset $\pm 5\epsilon/4$ from E_{sat} . Distance estimate to within few r_{tide} .

TIDAL STREAMS AS GALACTIC POTENTIOMETERS

CONSTRAINING GALACTIC POTENTIAL

The Algorithm

Johnston et al. (1999)

医下子 医

-

Devdeep Sarkar Extragalactic Astrophysics Tidal Streams as Galactic Potentiometers

CONSTRAINING GALACTIC POTENTIAL

The Algorithm

• For each assumed potential, integrate the satellite's orbit backward and calculate r_{tide} and ϵ at the pericenter.

CONSTRAINING GALACTIC POTENTIAL

The Algorithm

- For each assumed potential, integrate the satellite's orbit backward and calculate r_{tide} and ϵ at the pericenter.
- For each star in the debris with I, b, μ_I , μ_b , and v_{los} :

CONSTRAINING GALACTIC POTENTIAL

The Algorithm

- For each assumed potential, integrate the satellite's orbit backward and calculate r_{tide} and ϵ at the pericenter.
- For each star in the debris with I, b, μ_I , μ_b , and v_{los} :
 - create n_{test} particles with energies E in the range $\pm 3\epsilon/4$ about $(E_{sat} \mp 5\epsilon/4)$ if the star is ahead/behind the satellite

CONSTRAINING GALACTIC POTENTIAL

The Algorithm

- For each assumed potential, integrate the satellite's orbit backward and calculate r_{tide} and ϵ at the pericenter.
- For each star in the debris with I, b, μ_I, μ_b, and v_{los}:
 - create n_{test} particles with energies E in the range ±3ε/4 about (E_{sat} ∓ 5ε/4) if the star is ahead/behind the satellite
 - estimate the "energy distance" to each particle

CONSTRAINING GALACTIC POTENTIAL

The Algorithm

- For each assumed potential, integrate the satellite's orbit backward and calculate r_{tide} and ϵ at the pericenter.
- For each star in the debris with I, b, μ_I, μ_b, and v_{los}:
 - create n_{test} particles with energies E in the range $\pm 3\epsilon/4$ about $(E_{sat} \mp 5\epsilon/4)$ if the star is ahead/behind the satellite
 - estimate the "energy distance" to each particle
 - integrate backward in time for a Galactic lifetime

CONSTRAINING GALACTIC POTENTIAL

The Algorithm (cont'd...)

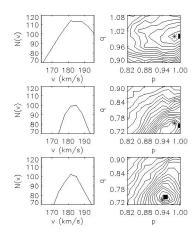
- For each star in the debris with I, b, μ_I , μ_b , and v_{los} :
 - credit the potential with a "capture" whenever any of these particles is separated by $dr < 1.8r_{tide}$ and a velocity $dv < (Gm_{sat}/dr)^{1/2}$.

CONSTRAINING GALACTIC POTENTIAL

The Algorithm (cont'd...)

- For each star in the debris with I, b, μ_I , μ_b , and v_{los} :
 - credit the potential with a "capture" whenever any of these particles is separated by $dr < 1.8r_{tide}$ and a velocity $dv < (Gm_{sat}/dr)^{1/2}$.
- Assign the potential's "score" as the number of successful captures.

CONSTRAINING GALACTIC POTENTIAL


The Algorithm (cont'd...)

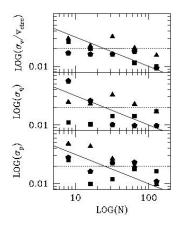
- For each star in the debris with I, b, μ_I , μ_b , and v_{los} :
 - credit the potential with a "capture" whenever any of these particles is separated by $dr < 1.8r_{tide}$ and a velocity $dv < (Gm_{sat}/dr)^{1/2}$.
- Assign the potential's "score" as the number of successful captures.
- The potential having the highest score is the most likely one!

```
Johnston et al. (1999)
```


Simulation Results

Recaptured Particles

Left-hand panels: Maximum number of captured particles for fixed v_{circ} and arbitrary q, p. Right-hand panels: Maximum number of rebound particles contoured in the p-q plane for the most likely value of v_{circ} from the left-hand panels.



Johnston et al. 1999

Devdeep Sarkar Extragalactic Astrophysics

TIDAL STREAMS AS GALACTIC POTENTIOMETERS

SIMULATION RESULTS

Dispersion

$$\sigma_w = \left(< w^2 > - < w >^2
ight)^{1/2}$$

Bootstrapped errors in the potential calculated with N stars. The solid line is given by $\sigma_w = 1/10\sqrt{N}$. The dotted line shows the size of one cell of the gridded distribution from which σ_w was calculated.

Johnston et al. 1999 Devdeep Sarkar Extragalactic Astrophysics

TIDAL STREAMS AS GALACTIC POTENTIOMETERS

Outline The ABC's of Tidal Streams

Model Building Constraining Galactic Potential So What?

WHAT HAVE WE LEARNT?

From Johnston et al. (1999)...

- Use of SIM measurements of stars in tidal streams to probe the Galactic potential seems promising.
- The 5D phase-space information for only 100 stars can be used to determine the circular velocity and shape of the Galactic halo with accuracies of a few percent...more than an order-of-magnitude improvement in our knowledge about MW's mass distribution.

cont'd...

However, discussion has been limited to four-parameter model...uncertainty will increase with the number of parameters varied.

From P241С то ...

- K. V. Johnston, L. Hernquist, & M. Bolte; ApJ, 465, 278 (1996)
- K. V. Johnston, H. Zhao, D. N. Spergel, & L. Hernquist; ApJ, 512, 109 (1999)
- 🔋 C. Murali & J. Dubinski; ApJ, 118, 911 (1999)
- R. Ibata, G. F. Lewis, M. Irwin, E. Totten, & T. Quinn; ApJ, 551, 294 (2001)
- 🔋 C. Grillmair & R. Johnson; ApJ, 639, 17 (2006)
- **YOU (2007? 2014?)**